Site Network: Home |

Wow! That's fast TCP!

Data has been sent across a wide-area optical network at 101Gbit/sec., the fastest-ever sustained data transmission speed.

It was demonstrated by a High Energy Physics research team that included the California Institute of Technology, Stanford Linear Accelerator Center (SLAC) and the Fermi National Accelerator Laboratories (FNAL). The 101Gbit/sec. transmission from Pittsburgh to Los Angeles lasted several minutes as part of a 90-minute test and won the Supercomputing Bandwidth Challenge, intended to help increase network transmission speeds for grid computing such as CERN's Large Hadron Collider project.

The team set a new world record aggregate bandwidth peak of 101.13Gbit/sec., far in excess of the 2003 record of 23.21Gbit/sec., and beating the nearest contender by more than 300%.

The research team's "High-Speed TeraByte Transfers for Physics" record data transfer speed -- 12.6 Gbit/sec. or 4.6TB an hour -- is equivalent to downloading three full DVD movies per second, or transmitting all of the content of the Library of Congress in 15 minutes.

The sending and receiving servers were Sun Microsystem's Fire V20z servers, based on the AMD Opteron processor, running Solaris 10 and Linux. SLAC was able to completely fill a 10Gbit/sec. transcontinental network path for a sustained time with standard 1,500B packets, and the team achieved more than 15Gbit/sec. (9.43Gbit/sec .in one direction and 5.65Gbit/sec in the other simultaneously) on a single 10Gbit/sec. wavelength path.

The key was to use a Fast TCP (Transmission Control Protocol), developed by Professor Steven Low and his Caltech Netlab team. This prevents buffer overflow and packet-dropping better than the standard TCP method, which counts packet drops as a congestion measure.

Glenn Weinberg, vice president, operating platform group at Sun, said, "Blistering TCP/IP network performance with Solaris 10 allowed this collaborative effort ... to blow away previous records."

Future optical networks, incorporating multiple 10Gbit/sec. links, are expected to be the foundation of grid computing systems. A hybrid network integrating both traditional switching and routing of packets, and dynamically constructed optical paths to support the largest data flows, is a central part of the near-term future vision that the scientific community has adopted to meet the challenges of data intensive activities.

By demonstrating that many 10Gbit/sec. wavelengths can be used efficiently over continental and transoceanic distances (often in both directions simultaneously), the High Energy Physics team showed that this vision of a worldwide dynamic grid supporting many-terabyte and larger data transactions is practical.

It also means that SANs will be able to accommodate remote components as if they were local. It will also strengthen moves to storage consolidation as remote access will be as fast as local access.


Post a Comment

This website does not recommend the purchase or sale of any stocks, options, bonds or any investment of any kind. This website does not provide investment advice. Disclaimer and Notices: Disclaimer: This website may contain "forward-looking" information including statements concerning the company's outlook for the future, as well as other statements of beliefs, future plans and strategies or anticipated events, and similar expressions concerning matters that are not historical facts. The forward-looking information and statements are subject to risks and uncertainties that could cause actual results to differ materially from those expressed in, or implied by, the statements. The information on this website includes forward looking statements, including statements regarding projections of future operations, product applications, development and production, future benefits of contractual arrangements, growth in demand, as well as statements containing words like believe, estimate, expect, anticipate, target, plan, will, could, would, and other similar expressions. These statements are not guarantees of future performance. Actual results could differ materially from the results implied or expressed in the forward looking statement. Additional information concerning factors that could cause actual results to differ materially from those in the forward looking statements are included in MVIS most recent Annual Report on Form 10-K filed with the Securities and Exchange Commission under the heading 'Risk factors related to the company's business,' and our other reports filed with the Comission from time to time. Except as expressly required by Federal securities laws, MVIS Blog undertakes no obligation to publicly update or revise any forward looking statements, whether as a result of new information, future events, changes in circumstances, or other reasons. Legal Notice: Although considerable care has been taken in preparing and maintaining the information and material contained on this website, MVIS Blog makes no representation nor gives any warranty as to the currency, completeness, accuracy or correctness of any of the elements contained herein. Facts and information contained in the website are believed to be accurate at the time of posting. However, information may be superseded by subsequent disclosure, and changes may be made at any time without prior notice. MVIS Blog shall not be responsible for, or liable in respect of, any damage, direct or indirect, or of any nature whatsoever, resulting from the use of the information contained herein. While the information contained herein has been obtained from sources believed to be reliable, its accuracy and completeness cannot be guaranteed. MVIS Blog has not independently verified the facts, assumptions, and estimates contained on this website. Accordingly, no representation or warranty, express or implied, is made as to, and no reliance should be placed on the fairness, accuracy, or completeness of the information and opinions contained on this website. Consequently, MVIS Blog assumes no liability for the accompanying information, which is being provided to you solely for evaluation and general information. This website does not contain inside information, proprietary or confidential information learned or disclosed as part of employment relationships or under nondisclosure agreements or otherwise.