Site Network: Home |

Pocket Projectors



Pocket Projectors

Microprojector technology could let handheld gadgets like mobile phones and iPods display big pictures.

By Kate Greene

Mobile devices can store pictures and videos, but viewing them on such a small screen isn't ideal. Microvision, based in Redmond, WA, hopes to solve this problem with a microprojector the company plans to reveal at next year's Consumer Electronics Show. The system, composed of semiconductor lasers and a tiny mirror, will be small enough to integrate into a phone or an iPod, says Randy Sprague, chief engineer at Microvision.

Right now there is great interest in putting projectors in phones. Indeed, major phone manufacturer Nokia is "looking at" different technologies to integrate projectors into mobile devices (see "The Future of Cell Phones"). As the fabrication technology used to make the components of these projectors matures, it is becoming more economically feasible to create a projector small enough to fit into a handheld device, says Microvision's Sprague.

The projector developed at Microvision is composed of two main parts: a set of red, blue, and green lasers made of semiconductor material, such as gallium indium arsenide, and a mirror--one millimeter across--that tilts on two axes. The lasers shine on the mirror, and the mirror reflects the pixel of light onto a wall or other surface. The intensities of the lasers change to produce different colors: when all three are pumping out light full blast, the pixel is white; when all three are off, the pixel is black. Other colors are produced from various combinations in between.

As the lasers flash on the mirror, the mirror gimbals on its two axes, flickering to produce 30 million pixels a second, each illuminating a surface for 20 nanoseconds. Using this laser and single-mirror setup, the projector paints a scene onto a surface one pixel at a time, says Sprague. It does this so quickly that our eyes perceive a static image or a continuous movie.

One of the challenges is to design a rapidly gyrating mirror that can coordinate with the lasers that turn on and off 100 million times a second. "This mirror is thrashing all around, and the lasers are buzzing like crazy," says Sprague, "so you have to synchronize."

Integrated into the Microvision mirror, he says, are silicon mechanical structures that measure strain on the mirror, detecting what position it's in. This information is fed back into the laser modulator--the device that determines when a laser is emitting light or not--and the feedback loop allows the system to constantly adjust, depending on the demands of the projected image.

The mirror, its mount, and the other mechanical components are all made of silicon, putting the projector in a class of device called MEMS (microelectromechanical systems). Sprague says that Microvision developed most of the technology a couple of years ago, but it was waiting for one particular component to become available: a green laser that modulates at the rate required for the projector to work. Only recently have such compact, high-powered lasers become commercially available, he says (see "Ultra-Colorful TV").

Adding a projector to a handheld device, says Ming Wu, professor of electrical engineering at the University of California, Berkeley, could change the way people communicate. Friends might share more movies and pictures, and business professionals who hesitate to pack a bulky projector for a presentation might start using more visuals when they pitch their products, Wu says. "I think it will dramatically change how people will interact with one another," he says. "People won't hesitate to use more image-based communications."

However, some researchers are skeptical that Microvision can pull off a commercially successful microprojector. A prototype is a far cry from a mass-manufactured device that phone makers and consumers will want to buy, says Olav Solgaard, professor of electrical engineering at Stanford. "It's a question of if they can do it reliably and at a reasonable cost," he says. Sprague wouldn't say how much a projector would add to the price of a cell phone.

Microvision expects to release its first products, a stand-alone projector (for media players, cell phones, laptops and other portable devices) and an embedded projector for a smart phone, in 2008. The company has signed a deal with an undisclosed electronics manufacturer in Asia, but the exact timeline for the products depend on the needs of partners and the energy efficiency of the lasers, Sprague says. In an embedded system, he explains, laser-energy efficiency could be a concern: it's expected that projectors made using existing technology would tap a battery fairly quickly. A phone in "projector" mode would use about 50 percent more power than a phone in "call" mode, Sprague says. But over time, he adds, "it will improve to the point where I do believe people will be watching full-length movies from their cell phones."

5 comments:

At December 6, 2006 at 7:12 AM Anonymous said...

Is it just me, or has there been an increasing amount of mainstream media exposure on microprojectors?

 
At December 6, 2006 at 1:04 PM Anonymous said...

Ben,

Any comments on professor Solgaard's concerns?
Reading some of the background material on him,
he appears to be highly qualified in the field.

Regards,
-Howard O.

 
At December 6, 2006 at 1:25 PM Ben said...

Howard,

Professor Solgaard says "It's a question of if they can do it reliably and at a reasonable cost."

That's no secret to us -- our goal is to create a product that's reliable, high performance and cost effective. We feel we are making good progress, and our agreement with the large Asian consumer electronics company is intended to result in designs of IPM and PicoP that are optimized for low-cost, high-quality, high-volume manufacturing.

So I would say that we take Solgaard's concerns to heart and are actively progressing on retiring the risks associated with manufacturing PicoP in high-volumes, in order to have a high-quality product available for sale in 2008.

We are totally focused on the performance, size, power, cost, reliability and manufacturability of the IPM and are excited about the progress we're making every day.

 
At December 6, 2006 at 3:16 PM Anonymous said...

IPM can display 30 million pixels? Did I read that right? That number sounds too good to be true.

 
At December 6, 2006 at 6:53 PM Anonymous said...

That's 30 million pixels per second.

 

Post a Comment


This website does not recommend the purchase or sale of any stocks, options, bonds or any investment of any kind. This website does not provide investment advice. Disclaimer and Notices: Disclaimer: This website may contain "forward-looking" information including statements concerning the company's outlook for the future, as well as other statements of beliefs, future plans and strategies or anticipated events, and similar expressions concerning matters that are not historical facts. The forward-looking information and statements are subject to risks and uncertainties that could cause actual results to differ materially from those expressed in, or implied by, the statements. The information on this website includes forward looking statements, including statements regarding projections of future operations, product applications, development and production, future benefits of contractual arrangements, growth in demand, as well as statements containing words like believe, estimate, expect, anticipate, target, plan, will, could, would, and other similar expressions. These statements are not guarantees of future performance. Actual results could differ materially from the results implied or expressed in the forward looking statement. Additional information concerning factors that could cause actual results to differ materially from those in the forward looking statements are included in MVIS most recent Annual Report on Form 10-K filed with the Securities and Exchange Commission under the heading 'Risk factors related to the company's business,' and our other reports filed with the Comission from time to time. Except as expressly required by Federal securities laws, MVIS Blog undertakes no obligation to publicly update or revise any forward looking statements, whether as a result of new information, future events, changes in circumstances, or other reasons. Legal Notice: Although considerable care has been taken in preparing and maintaining the information and material contained on this website, MVIS Blog makes no representation nor gives any warranty as to the currency, completeness, accuracy or correctness of any of the elements contained herein. Facts and information contained in the website are believed to be accurate at the time of posting. However, information may be superseded by subsequent disclosure, and changes may be made at any time without prior notice. MVIS Blog shall not be responsible for, or liable in respect of, any damage, direct or indirect, or of any nature whatsoever, resulting from the use of the information contained herein. While the information contained herein has been obtained from sources believed to be reliable, its accuracy and completeness cannot be guaranteed. MVIS Blog has not independently verified the facts, assumptions, and estimates contained on this website. Accordingly, no representation or warranty, express or implied, is made as to, and no reliance should be placed on the fairness, accuracy, or completeness of the information and opinions contained on this website. Consequently, MVIS Blog assumes no liability for the accompanying information, which is being provided to you solely for evaluation and general information. This website does not contain inside information, proprietary or confidential information learned or disclosed as part of employment relationships or under nondisclosure agreements or otherwise.